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A theorem is proved which gives sufficient conditions under which electromagnetic backscatter from an 
inhomogeneous object vanishes identically. It is shown that under these conditions the electric and magnetic 
fields are algebraically related. The special example of a spherically symmetric inhomogeneous scatterer is 
considered, and the low-frequency differential cross section is derived. An interesting result at high frequen
cies is also pointed out. 

I. INTRODUCTION 

THERE is considerable current interest in minimiz
ing radar cross sections. Thus, it seems pertinent 

to examine the ideal situation of zero electromagnetic 
backscatter. While the set of both necessary and 
sufficient conditions for zero backscatter is not known, 
the following theorem does provide one simple sufficient 
criterion1: 

If a plane wave is incident along the axis of symmetry 
of an axially symmetric scatterer, and if the relative 
permittivity and permeability of the obstacle satisfy 
the relation e(r) = ju(r), then the radar cross section is 
identically zero for all frequencies. 

The theorem is first proved in its general form, then 
demonstrated for the important special case of an 
inhomogeneous spherically symmetric scatterer. The 
analytical methods of the latter derivation are also 
used to deduce the angular distribution of low-frequency 
radiation scattered from such a medium. An interesting 
result at high frequencies is also pointed out. 

II. PROOF OF THE THEOREM 

Maxwell's equations, assuming harmonic time de
pendence, may be written in the form of two stationary 
wave equations 

V/*(r) 
V X V X E - # E + l 7 ( r ) E X V X E = 0 , (1) 

MW 

Ve(r) 
VXVXH-fc2H+Z7(r)H X V X H = 0 , (2) 

where the relative permittivity e and relative permea
bility fx are arbitrary complex functions of r, and 
U(r)=k2[l—/z(r)e(r)]. The standard boundary condi
tions for a scattering problem are assumed: At infinity 
the total fields are the sum of an incident plane wave 

* The research reported in this paper was sponsored by the Air 
Force Ballistic Systems Division, Air Force Systems Command, 
under Contract No. AF 04(694)4 with Space Technology 
Laboratories, Inc. 

1 A special case of this result was, to the authors' knowledge, 
first discussed by V. H. Weston [Conductron Corporation, Report 
CAA-005-10-P, Appendix H, 1961 (unpublished)] who required 
€=/*=const in the scattering medium. The proof offered by Weston 
for the homogeneous case is essentially the same as that used by 
the authors in the proof of the general case (Sec. II) . 

and an outgoing spherical wave; the usual continuity 
conditions at surfaces of discontinuity, if any, of e(r) 
and /*(r) are also assumed. 

To specialize to the axially symmetric problem, the 
axis of symmetry and the direction of propagation of the 
incident plane wave are both chosen to be along the z 
axis; i.e., E0XHo* is a vector pointing in the +2 
direction. The assumption of an outgoing scattered wave 
implies that, in the backward direction, the phase of H 
relative to that of E has been changed so that 
EscattXH*scatt is a vector pointing in the —z direction. 
(The change in relative phase of E and H is possible 
since E and H are solutions of different equations.) 

Suppose now that €(r)=/x(r). The differential equa
tions for E and H are then identical, and they may be 
replaced by the single equation 

VXVXK(r)-£2K(r)+£/(r)K(r) 

V/i(r) 

M » 
XVXK(r) = 0. (3) 

There are two linearly independent vector solutions to 
this equation, one corresponding to the incident wave, 
K0(r), polarized in the x direction and the other corre
sponding to K0(r) polarized in the y direction. In the 
first case, the assumed axial symmetry requires the 
backscattered field to be polarized in the x direction, 
while in the second case the backscattered field must 
be polarized in the y direction. Furthermore, because of 
the axial symmetry the phase change of the ^-polarized 
backscattered wave must be exactly equal to the phase 
change of the y-polarized backscattered wave. There
fore, the relative phase of the two scattered waves is the 
same as their relative phases in the incident wave. 
Identifying E with the solution corresponding to the 
^-polarized incident wave and H with the solution corre
sponding to the y-polarized incident wave, we conclude 
that EscattXH*8catt must be a vector pointing in the 
direction of propagation of the incident wave. But this 
is consistent with the assumption of outgoing scattered 
waves only if the backscattered fields are identically 
zero. There are no explicit restrictions on frequency, 
and the theorem is, therefore, valid for all frequencies 
for which e=/x. 

Note that the strict equality of e(r) and /x(r) is 
actually not necessary for the validity of the theorem. 
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I t is clear from Eq. (1) that the E and H equations are 
identical provided only that the equality V e / e = VM/M 
is satisfied at every space point r. The most general 
relation between /x and e satisfying this equality is 
e(r) = bfx(r), where b is any constant. Physically, the 
case when b^l represents the problem in which the 
source of the plane wave, the scatterer, and the observer 
are all imbedded in a medium whose relative permit
tivity and/or permeability are different from unity. The 
proof of the theorem, for the more general case 6 ^ 1 , 
proceeds essentially as before, with only a redefinition 
of the "free-space" wave number required. 

III. REMARKS 

An interesting consequence of the fact that the E 
and H fields are described by a single vector equation is 
that there exists an explicit nondifferential relation 
between the E and H fields. I t may be shown that if 
K(r) is a solution to Eq. (3), then <3LfiT((R~V) is also a 
solution, where (R is the rotation operator (referred to 
a Cartesian basis): 

TO - 1 0] 
(R= 1 0 0 . 

10 0 l j 

This may be established by operating on Eq. (3) with 
(R, replacing the argument r of the scalar and vector 
functions by (R^r, and using the invariance property 
^((R_1r)=iu(r); a small amount of algebra then shows 
that Eq. (3) is recovered, but with (RK((R-1r) replacing 
K(r). Since the incident field K0(r) is a plane wave 
propagating in the -\-z direction, we may choose 
K0(r) = &***. Then (&K0(®r1r) = yeikz is a vector repre
senting an incident plane wave polarized in the +y 
direction. Therefore, if K(r) is one solution of Eq. (3), 
(RK((R-1r) is the second linearly independent solution, 
and we may identify E(r) and H(r) with K(r) and 
(RK((R_1r), respectively.2 This identification is consistent 
with the boundary conditions on E and H at the surface 
of the scatterer, for the requirement that $ ( r )XK(r ) be 
continuous transforms into the condition that $(r) 
XCRKCCR r̂) be continuous. 

Incidentally, the relation H(r) = (RE((R~1r) can now 
be used to give a very simple proof of the theorem, for 
on the z-axis (RE((R_1r) = (RE(r), so that the z com
ponent of S = E X H * becomes simply 

5.(0,0,*) = I E*(0,0,s) 12+1 £y (0,0,*) |2. 

Since Sz(0,0,z)>0, the far-zone scattered field on the 
symmetry axis must propagate only in the +z direction, 
which contradicts the outgoing-wave boundary condi
tion in the backward direction, unless the scattered 
field is zero. 

Since the backscatter cross section is zero when 
e(r) = /x(r), it should increase continuously from zero 
as e(r)—/x(r) is allowed to differ slightly from zero 
everywhere. This suggests that there may exist an 
expansion of the fields in terms of a uniformly small 
quantity, / [e(r)]—/[/z(r)] , which should hold for large, 
as well as small, values of e. In any case, the fact that 
the cross section in the backward direction must vanish 
when e=fx, should serve as an additional validity 
criterion for any approximation method developed to 
apply when e and (x both differ from unity. 

IV. THE SPHERICALLY SYMMETRIC CASE 

I t would be useful if the angular distribution of the 
radiation, when / /= e, could be compared with that when 
€9^IJL=1 in order to determine whether the radiation 
which is not scattered in the backward direction appears 
instead at angles close to T, or whether the forward 
scattering amplitude is enhanced. Such a comparison is 
not possible for the general case. However, it is now 
shown that, for long wavelengths, the angular distribu
tion for a spherically symmetric, but inhomogeneous, 
scatterer has a particularly simple form when e(r) = n(r), 
and that the radiation pattern is peaked in the forward 
direction. 

The theory of scattering from an inhomogeneous 
sphere has been developed by several authors3-5 for the 
special case n=i. The following expression for the 
electric field is the generalization to a system with 
varying fi(r), as can be verified by direct substitution 
into the Maxwell equations, 

€(r)E(r) = V X [ M 1 / 2 W e ( ^ ( r ) r ] 

1 
+ - V X { V X [ € 1 A ( r ) 0 ( r ) r ] ) , (4) 

k 

ftB(r) = V X E ( r ) , 

where \p and cj> satisfy the following equations: 

VV+r^V-V72— (M~1/2)1^=0, 
L dr2 J 

(5) 

(6) 

V V + r & V - € 1 / 2 — (e-i/2)"L=o. (7) 

L dr2 J 

The boundary conditions on ^ and <j> must be such that 

E(r) -> A exp(ikz)+A(Oy<l>)r-1 expO'&r). (8) 

Here, f is the initial polarization, and A is the vector 
scattering amplitude. The absolute square of A is the 
differential cross section. 

2 This is true in Gaussian units, but because of the linearity of 
the equations we may make the more general statement that 
H(r) = ^(RE((K_1r), where h is a constant appropriate to the chosen 
system of units. 

3 C. T. Tai, Appl. Sci. Res. Sect. B7, 113 (1958). 
4 D. Arnush, Space Technology Laboratories, Inc., Report No. 

6110-7466-RU-001 (unpublished). 
5 P. J. Wyatt, Phys. Rev. 127, 1837 (1962). 
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The radial equations associated with Eqs. (6) and 
(7) are 

d2 r d? 1(1+1) 
—(rRi)+\ fcV-V/2— (M~1/2) 
dr2 L dr2 

+ 1)1 

r2 J 

d2 

<rSt)+ l&ne-
d2 1(1+1)-] 

i/2_(e-i/2) _ _ U J = o , 
dr2 L dr2 ' r2 A 

with boundary conditions 

rRh rSi-*0, 

rRi->sm(kr-lTr/2+5i), 
r—»oo 

rSi—> $m(kr—lT/2+r)i). 
r—»oo 

The phase shifts, 81 and T?Z, determine the scattering. 
When jLt(r) = e(r), the radial equations are identical, 
a n d di—7]i. 

The scattering amplitude is derived by substituting 
expansions of the form 

for \p and 0 in Eq. (4). The expansion coefficients can 
then be evaluated by imposing the asymptotic condi
tion, Eq. (8), provided that the vector plane wave is 
expressed by its known expansion6 in spherical har
monics. In general, A is a complicated function of angles, 
but because of the equality of the phase shifts di and rji 
when ix(r) = e(r), considerable simplification of the 
vector-scattering amplitude is possible. I t is readily 
shown that in this case A (0,0) reduces to the relatively 
simple expression 

. - (2/+1) 
A (0,0) = (2^)~1(cos00-sin0$) £ (e2i8i-l) 

/(H-l)Pi(r)], (9) x[(i-< 
dPijr) 

dr 

One then finds from Eq. (9) that 

9 
IA(0,0) | 2 = — sin25!(l+cos0)2, 

4&2 

where r=cos0. The theorem can now be easily verified 
for this special case since, for 0=7r, the quantity in 
square brackets vanishes for every value of /, and A(7r) 
is, therefore, identically zero. 

When &#<8Cl, where a is the characteristic dimension 
of the scatterer, only the 1=1 phase shift is important. 

6 W. K. H. Panofsky and M. Phillips, Classical Electricity and 
Magnetism (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1955), p. 205. 

(10) 

in contrast to a (l+cos20) angular dependence of the 
differential cross section when (x=l.7 Thus, at least in 
the long-wavelength limit, the distribution shifts to 
predominantly forward scattering. 

In the short-wavelength limit, the Schiff approxima
tion for large-angle electromagnetic scattering8 can be 
used to compute the angular distribution in the neigh
borhood of the backward direction. With his choice of 
axes, this approximation takes the following form 
when fx=e: 

A(kfyko)c 

where 

t ( l+cos0) 
4TT 

X (cos0 cos0 x+s in0 y—sin0 cos0 z) 

X / ^ r [ l - e ( r ) ] e x p U q - r + ~ -

f B(t-hs)ds+ f B{x+kfs)ds 1 , (11) 

£( r ) = e 2 ( r ) - l , 

q = k 0 - k / . 
(12) 

The unit vectors &0 and kf point in the initial and final 
directions, respectively. Equation (11) is zero in the 
backward direction, under no assumptions other than 
B<Kl, kK2>l, where R is a characteristic dimension of 
the scatterer. The assumption of axial symmetry is not 
required. For angles close to 180°, the angular depend
ence of the cross section is again approximately 
(l+cos0)2 . This follows from a Taylor expansion of the 
integral in Eq. (11) about 0=TT. When e(r) = e(r), this 
approximation to the angular dependence is even better 
since the linear term in the Taylor expansion is zero. 
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7 The result for ju = l refers to the less general case of a homo
geneous sphere, in which the differential cross section has been 
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